An Inconvenient Hagfish

On the importance of intermediates.

1280px-eptatretus_stoutii

We think of scientific progress as working like building blocks constantly being added to a growing structure, but sometimes a scientific discovery can actually lead us to realize that we know less than we thought we did. Take vision, for instance. Vertebrates (animals with backbones) have complex, highly-developed “camera” eyes, which include a lens and an image-forming retina, while our invertebrate evolutionary ancestors had only eye spots, which are comparatively very simple and can only sense changes in light level.

At some point between vertebrates and their invertebrate ancestors, primitive patches of light sensitive cells which served only to alert their owners to day/night cycles and perhaps the passing of dangerous shadows, evolved into an incredibly intricate organ capable of forming clear, sharp images; distinguishing minute movements; and detecting minor shifts in light intensity.

584px-diagram_of_eye_evolution-svg
Schematic of how the vertebrate eye is hypothesized to have evolved, by Matticus78

In order for evolutionary biologists to fully understand when and how this massive leap in complexity was made, we need an intermediate stage. Intermediates usually come in the form of transitional fossils; that is, remains of organisms that are early examples of a new lineage, and don’t yet possess all of the features that would later evolve in that group. An intriguing and relatively recent example is Tiktaalik, a creature discovered on Ellesmere Island (Canada) in 2004, which appears to be an ancestor of all terrestrial vertebrates, and which possesses intermediate characteristics between fish and tetrapods (animals with four limbs, the earliest of which still lived in the water), such as wrist joints and primitive lungs. The discovery of this fossil has enabled biologists to see what key innovations allowed vertebrates to move onto land, and to precisely date when it happened.

There are also species which are referred to as “living fossils”, organisms which bear a striking resemblance to their ancient ancestors, and which are believed to have physically changed little since that time. (We’ve actually covered a number of interesting living fossils on this blog, including lungfish, Welwitschia, aardvarks, the platypus, and horseshoe crabs.) In the absence of the right fossil, or in the case of soft body parts that aren’t usually well-preserved in fossils, these species can sometimes answer important questions. While we can’t be certain that an ancient ancestor was similar in every respect to a living fossil, assuming so can be a good starting point until better (and possibly contradictory) evidence comes along.

So where does that leave us with the evolution of eyes? Well, eyes being made of soft tissue, they are rarely well preserved in the fossil record, so this was one case in which looking at a living fossil was both possible and made sense.

Hagfish, which look like a cross between a snake and an eel, sit at the base of the vertebrate family tree (although they are not quite vertebrates themselves), a sort of “proto-vertebrate.” Hagfish are considered to be a living fossil of their ancient, jawless fish ancestors, appearing remarkably similar to those examined from fossils. They also have primitive eyes. Assuming that contemporary hagfishes were representative of their ancient progenitors, this indicated that the first proto-vertebrates did not yet have complex eyes, and gave scientists an earliest possible date for the development of this feature. If proto-vertebrates didn’t have them, but all later, true vertebrates did, then complex eyes were no more than 530 million years old, corresponding to the time of the common ancestor of hagfish and vertebrates. Or so we believed.

hagfish
The hagfish (ancestors) in question.  Taken from: Gabbott et al. (2016) Proc. R. Soc. B. 283: 20161151

This past summer, a new piece of research was published which upended our assumptions. A detailed electron microscope and spectral analysis of fossilized Mayomyzon (the hagfish ancestor) has indicated the presence of pigment-bearing organelles called melanosomes, which are themselves indicative of a retina. Previously, these melanosomes, which appear in the fossil as dark spots, had been interpreted as either microbes or a decay-resistant material such as cartilage.

This new finding suggests that the simple eyes of living hagfish are not a trait passed down unchanged through the ages, but the result of degeneration over time, perhaps due to their no longer being needed for survival (much like the sense of smell in primates). What’s more, science has now lost its anchor point for the beginning of vertebrate-type eyes. If an organism with pigmented cells and a retina existed 530 million years ago, then these structures must have begun to develop significantly earlier, although until a fossil is discovered that shows an intermediate stage between Mayomyzon and primitive invertebrate eyes, we can only speculate as to how much earlier.

This discovery is intriguing because it shows how new evidence can sometimes remove some of those already-placed building blocks of knowledge, and how something as apparently minor as tiny dark spots on a fossil can cause us to have to reevaluate long-held assumptions.

Sources

  • Gabbott et al. (2016) Proc. R. Soc. B. 283: 20161151
  • Lamb et al. (2007) Nature Rev. Neuroscience 8: 960-975

*The image at the top of the page is of Pacific hagfish at 150 m depth, California, Cordell Bank National Marine Sanctuary, taken and placed in the public domain by Linda Snook.

Sex & the Reign of the Red Queen

Why sexual species beat clones every time.

Tenniel_red_queen_with_alice

“Now, here, you see, it takes all the running you can do to keep in the same place.”

From a simple reproductive perspective, males are not a good investment. With apologies to my Y chromosome-bearing readers, let me explain. Consider for a moment a population of clones. Let’s go with lizards, since this actually occurs in lizards. So we have our population of lizard clones. They are all female, and are all able to reproduce, leading to twice the potential for creating more individuals as we see in a species that reproduces sexually, in which only 50% of the members can bear young. Males require all the same resources to survive to maturity, but cannot directly produce young. From this viewpoint alone, the population of clones should out-compete a bunch of sexually-reproducing lizards every time. Greater growth potential. What’s more, the clonal lizards can better exploit a well-adapted set of genes (a “genotype”); if one of them is well-suited to survive in its environment, they all are.

Now consider a parasite that preys upon our hypothetical lizards. The parasites themselves have different genotypes, and a given parasite genotype can attack certain host (i.e. lizard) genotypes, like keys that fit certain locks. Over time, they will evolve to be able to attack the most common host genotype, because that results in their best chance of survival. If there’s an abundance of host type A, but not much B or C, then more A-type parasites will succeed in reproducing, and over time, there will be more A-type parasites overall. This is called a selection pressure, in favour of A-type parasites. In a population of clones, however, there is only one genotype, and once the parasites have evolved to specialise in attacking it, the clones have met their match. They are all equally vulnerable.

The sexual species, however, presents a moving target. This is where males become absolutely worth the resources it takes to create and maintain their existence (See? No hard feelings). Each time a sexual species mates, its genes are shuffled and recombined in novel ways. There are both common and rare genotypes in a sexual population. The parasite population will evolve to be able to attack the most common genotype, as they do with the clones, but in this case, it will be a far smaller portion of the total host population. And as soon as that particular genotype starts to die off and become less common, a new genotype, once rare (and now highly successful due to its current resistance to parasites), will fill the vacuum and become the new ‘most common’ genotype. And so on, over generations and generations.

Both species, parasite and host, must constantly evolve simply to maintain the status quo. This is where the Red Queen hypothesis gets its name: in Wonderland, the Red Queen tells Alice, “here, you see, it takes all the running you can do to keep in the same place.” For many years, evolution was thought of as a journey with an endpoint: species would evolve until they were optimally adapted to their environment, and then stay that way until the environment changed in some fashion. If this was the case, however, we would expect that a given species would be less likely to go extinct the longer it had existed, because it would be better and better adapted over time. And yet, the evidence didn’t seem to bear this prediction out. The probability of extinction seemed to stay the same regardless of the species’ age. We now know that this is because the primary driver of evolution isn’t the environment, but competition between species. And that’s a game you can lose at any time.

1280px-Passiflora_in_Canary_Islands
Passionflower. Photo by Yone Moreno on Wikimedia Commons.

Now the parasite attacking the lizards was just a (very plausible) hypothetical scenario, but there are many interesting cases of the Red Queen at work in nature. And it’s not all subtly shifting genotypes, either; sometimes it’s a full on arms race. Behold the passionflower. In the time of the dinosaurs, passionflowers developed a mutually beneficial pollinator relationship with longwing butterflies. The flowers got pollinated, the butterflies got nectar. But then, over time, the butterflies began to lay their eggs on the vines’ leaves. Once the eggs hatched, the young would devour the leaves, leaving the plant much the worse for wear. In response, the passionflowers evolved to produce cyanide in their leaves, poisoning the butterfly larvae. The butterflies then turned the situation to their advantage by evolving the ability to not only eat the poisonous leaves, but to sequester the cyanide in their bodies and use it to themselves become poisonous to their predators, such as birds. The plants’ next strategy was to mimic the butterflies’ eggs. Longwing butterflies will not lay their eggs on a leaf which is already holding eggs, so the passionflowers evolved nectar glands of the same size and shape as a butterfly egg. After aeons of this back and forth, the butterflies are currently laying their eggs on the tendrils of the passionflower vines rather than the leaves, and we might expect that passionflowers will next develop tendrils which appear to have butterfly eggs on them. These sorts of endless, millennia-spanning arms races are common in nature. Check out my article on cuckoos for a much more murderous example.

IMG_2933
Egg-like glands at the base of the passionflower leaf (the white dots on my index finger).

Had the passionflowers in this example been a clonal species, they wouldn’t likely have stood a chance. Innovations such as higher-than-average levels of cyanide or slightly more bulbous nectar glands upon which defences can be built come from uncommon genotypes. Uncommon genotypes produced by the shuffling of genes that occurs in every generation in sexual species.

And that, kids, is why sex is such as fantastic innovation. (Right?) Every time an illness goes through your workplace, and everybody seems to get it but you, you’ve probably got the Red Queen (and your uncommon genotype) to thank.

 

Sources

  • Brockhurst et al. (2014) Proc. R. Soc. B 281: 20141382.
  • Lively (2010) Journal of Heredity 101 (supple.): S13-S20 [See this paper for a very interesting full explanation of this links between the Red Queen hypothesis and the story by Lewis Carroll.]
  • Vanderplank, John. “Passion Flowers, 2nd Ed.” Cambridge: MIT Press, 1996.

*The illustration at the top of the page is by Sir John Tenniel for Lewis Carroll’s “Through the Looking Glass,” and is now in the public domain.

The Cost of Colour

or, the fading world at the tip of your nose.

Sobo_1906_324Try to imagine a colour you’ve never seen. Or a scent you’ve never smelled. Try to picture the mental image produced when a bat uses echolocation, or a dolphin uses electrolocation. It’s nearly impossible to do without referring to a previous experience, or one of our other senses. We tend to tacitly assume that what we perceive of the world is more or less all there is to perceive. It would be closer to the truth to say that what we perceive is what we need to perceive. Humans don’t require the extraordinary sense of smell that wild dogs do in order to get by in the world. But it wasn’t always this way.

Scent molecules are picked up and recognized in our noses by olfactory receptors. Each type of receptor recognizes a few related types of molecules, and each type of receptor is written into our DNA as an olfactory receptor (OR) gene. In mammals, OR genes make up the largest gene family in our genome. There are over a thousand of them. Sadly for us, over 60% of these genes have deteriorated to the point of being nonfunctional. Why? In what must be a hard piece of news for X-Men fans, extra evolutionary features tend not to hang around unless they’re actively helping us to survive longer and breed more. If a gene can develop a fault that makes it useless without causing its host a major competitive disadvantage, it’ll eventually do so, and an incredible number of these broken genes – called “pseudogenes” – have built up and continue to sit in our genome. This isn’t specific to humans; cows, dogs, rats, and mice all have about 20% of their OR genes nonfunctional. But that still works out to a difference of hundreds of different types of scents that we can’t detect. Even compared to our closest relatives, the apes and old world monkeys, we have twice as many OR pseudogenes, and are accumulating random mutations (the cause of pseudogenes) at a rate four times faster than they are. This is all quite logical, of course; humans have evolved in such a way that being able to smell prey or potential mates from a distance just isn’t key to our survival.

Phylo tree image
From: Gilad et al. (2004) PLoS Biology 2(1): 0120

What’s more interesting is that when scientists looked at the OR genes of apes and old world monkeys (OWMs), they found elevated rates of deterioration there, too… about 32%, compared to only 17% in our next closest group of relatives, the new world monkeys (NWMs). So what happened between the divergence of one group of primates and the next that made an acute sense of smell so much less crucial? The answer came with the one exception among the NWMs. The howler monkey, unlike the rest of its cohort, had a degree of OR gene deterioration similar to the apes and OWMs. The two groups had one other thing in common: full trichromatic vision. Nearly all other placental mammals, including the NWMs, are dichromats, or in common parlance, are colourblind. Using molecular methods that look at rates of change in genes over time to determine when a particular shift happened, scientists determined that in both instances of full colour vision evolving, the OR genes began to deteriorate at about the same time. It was an evolutionary trade-off; once our vision improved, our sense of smell lost its crucial role in survival and slowly faded away. In apes and monkeys, this deterioration process seems to have come to a halt – at a certain point, what remains is still necessary for survival – but in humans, it is ongoing. We know this because of the high number of OR genes for which some individuals carry functional copies, and some carry broken copies. This variability in a population, called polymorphism, amounts to a snapshot of genes in the process of decay, since the broken copies are not, presumably, causing premature death or an inability to breed amongst their carriers. So as we continue to pay the evolutionary price for the dazzling array of colours we are able to perceive in the world, our distant descendants may live in an even poorer scentscape than our current, relatively impoverished one. There may be scents we enjoy today that will be as unimaginable to them as the feel of a magnetic field is to us.

As a quick final point, it turns out humans aren’t the only animal group to have undergone a widescale loss of OR genes. Just as full colour vision made those genes unnecessary for us, so moving into the ocean made them unnecessary for marine mammals. In an even more severe deterioration than that seen in humans, some whales and porpoises have nearly 80% OR pseudogenes. As you may already know, whales, dolphins, and other marine mammals evolved from land-dwelling, or terrestrial mammals (want to know more about it? Read my post here). Using methods similar to those mentioned above for primates, researchers found that at about the same time they were adapting anew to life in the ocean, their scent repertoire was beginning to crumble. And since anatomical studies show that the actual physical structures used to perceive scent, such as the olfactory bulb in the brain, are becoming vestigial in whales, it’s likely the loss isn’t finished yet. Interestingly, the researchers behind this study also looked at a couple of semi-marine animals, the sea lion and the sea turtle, which spend part of their time on land, and found that they have a sense of smell comparable to fully terrestrial animals, with no increased gene loss.

The widescale and ongoing loss of the sense of smell in certain animals, particularly ourselves, is a nice illustration of an evolutionary principle which can be summarized as “use it or lose it”, or more accurately, “need it or lose it.” We tend to think of evolution as allowing us to accrue abilities and features that are useful to us. But unless they’re keeping us and our offspring alive, they’re not going to stick around in the long term. Which makes you wonder, with humans’ incredible success in survival and proliferation on this planet, which relies overwhelmingly on our cognitive, rather than physical abilities, what other senses or abilities could we eventually lose?

Sources

*The image at the top of the page comes from Sobotta’s Atlas and Text-book of Human Anatomy (1906 edition), now in the public domain.

The Plant That Time Forgot (Welwitschia mirabilis)

(Via: Wikimedia Commons)

Common Name: Welwitschia mirabilis

A.K.A.: Welwitschia

Vital Stats:

  • Welwitschia is a gymnosperm, like pines or firs, and thus reproduces via male and female cones
  • Considered a “living fossil”
  • Named after one of its discoverers, Austrian botanist Friedrich Welwitsch
  • In mature specimens, the woody stem can grow up to one metre (3.3’) across

Found: In the Namib desert, along the west coast of Namibia and Angola

It Does What?!

Restricted to a tiny, arid swath of African desert, Welwitschia mirabilis represents the last remaining species of a very unusual lineage of plants. Close relatives met with extinction over the aeons, while welwitschia, tucked away in its remote and harsh desert range with little competition, just kept going. The fact that the species is alone, not just in its genus, but also in its family and order (the two ranks above genus in plant systematics), speaks to just how distantly related to any other living plant it is. For the sake of comparison, the Rosales, the order to which roses, apples, and pears belong, contains around 7700 species in 9 families and 260 genera. So original and captivating is welwitschia among plants that it has been the subject of more than 250 scientific articles since it was first described in 1863.

A mere infant. But probably still older than you are.
(Via: Lizworld.com)

So what makes this thing so weird? Well, plants typically have what’s called an apical meristem at the tips of their stems and/or branches. You can think of this as a clump of stem cells that keeps dividing, throwing off new leaves and buds in its wake. If you cut off the apical meristem, the plant must either develop a new one elsewhere, or stop producing new tissue.

In welwitschia, this isn’t the case. At the beginning of the plant’s life, the apical meristem produces just two leaves, and then dies. The plant will never grow another leaf, which is much more surprising when you consider that it may well live for more than a thousand years. How do you get through a millennium with only two leaves?! The answer is, these aren’t ordinary leaves. Uniquely, welwitschia’s two strap-like leaves have a band of meristematic tissue built into their base, which means they can continue to elongate outward indefinitely. The leaves will continue to grow at a rate of around half a millimetre (0.02”) per day for as long as the plant lives. If you’re thinking that this must mean leaves that are several hundred metres long, unfortunately, no, they aren’t. The leaves are abraded away by sand storms and eaten by passing animals. Even in the best case scenario, the cells at the leaf tips have a maximum lifetime of about ten years (still pretty good for a leaf…). What’s more, the leaves tend to get frayed and split over time, and end up looking like a lot more than just two leaves. Despite all the punishment, though, each leaf can reach a length of up to four metres (13’), giving a mature welwitschia a width of up to eight metres (26’) across.

Welwitschia’s answer to the pinecone.
(Image by Friedrich A. Lohmuller)

As you might expect from a long-lived relic of the past, there aren’t a lot of these plants around. For once, this has less to do with human disturbance than natural circumstances. Over millions of years, the range where welwitschia grows has dried out considerably, and in fact continues to get drier even now. Today, the plant relies largely on fog to meet its water needs, restricting its range to a thin strip of desert coastline where fogs occur regularly. Unlike cactuses or succulents, welwitschia has never evolved the ability to store water. Also problematic is a fungus, Aspergillus niger, which frequently infects and destroys germinating seeds. These factors together can mean that a welwitschia colony can sometimes go many years without successfully reproducing.

And of course, no threatened species would be complete without some human interference. In recent decades, unscrupulous collectors have removed plants from already small breeding populations, making it even more difficult to sustain their numbers. Interestingly, it’s noted in Wikipedia that plants in Angola are actually better protected from collecting than those in Namibia due to the higher concentration of landmines there.

So… landmines: bad for humans, good for endangered plants.

You think you have problems with split ends?
(Via: Natural History Museum)

Says Who?

  • The Gymnosperm Database
  • Dilcher et al. (2005) American Journal of Botany 92(8):1294-1310
  • Henschel & Seely (2000) Plant Ecology 150:7-26
  • Jacobson & Lester (2003) Journal of Heredity 94(3):212-217
  • Rodin (1958) American Journal of Botany 45(2):96-103

Randomly Assembled and Surprisingly Dangerous: The Platypus

(Via: National Geographic)

Common Name: The Duck-Billed Platypus

A.K.A.: Ornithorhynchus anatinus

Vital Stats:

  • Only species of Family Ornithorhynchidae
  • Males average 50cm (20”) long, females 43cm (17”)
  • Weigh between 0.7 and 2.4kg (1.5 – 5.3lbs.)
  • Body temperature of 32 degrees Celcius; five degrees lower than placental mammals
  • Live up to 17 years in captivity
  • Eat freshwater crustaceans, worms, and insect larvae

Found: Eastern Australia and Tasmania

It Does What?!

Besides looking like it was assembled from spare parts? We’ve all seen pictures of platypuses (yes, “platypuses”, not “platypi”) before, and everyone knows what total oddities they are: the duck-like bill, the beaver-esque tail, the fact that they lay eggs, despite being mammals; but behind these weird traits lie… even more weird traits! So let’s take a moment to appreciate the lesser-known eccentricities of the platypus, shall we?

First off, these cuddly looking freaks are actually dangerous. Male platypuses have a spur on each hind foot which is filled with a venom powerful enough to kill a large dog. While it isn’t enough to take out a human, it does cause severe, incapacitating pain whose after-effects can last for months. One of only a very few venomous mammals, the male’s venom production increases during the breeding season, suggesting its purpose may lie in competition with other males.

Why your dog and your platypus shouldn’t play together.
(By Jason Edwards, via: How Stuff Works)

And speaking of breeding, reproduction in platypuses isn’t exactly ‘mammal standard’, either. Unlike all other mammals, which have two sex chromosomes (X and Y; XX for females, XY for males, with rare exceptions), the platypus has ten. Talk about evolutionary overkill. A male platypus has the pattern XYXYXYXYXY, while a female has ten Xs. Researchers have found that the actual genetic structure of these sex chromosomes is actually more similar to birds than mammals, although 80% of platypus genes are common to other mammals.

After this alphabet soup of chromosomes arranges itself, up to three fertilised eggs mature in utero for about four weeks; much longer than in most other egg-laying species (in birds, this may be only a day or two). Once laid, the eggs are only about the size of a thumbnail, and hatch in around ten days. While platypuses produce milk, they don’t actually have proper teats to suckle their babies- the fluid is released from pores in the skin. A small channel on the mother’s abdomen collects the milk, which is then lapped up by the young. Strangely, the babies are actually born with teeth, but lose them before adulthood. Such is the impracticality of platypus design…

Adorably impractical.
(Via: noahbrier.com)

Finally, let’s explore platypus hunting methods. Platypuses are the only mammals with the sixth sense of electroreception. Those leathery duck bills of theirs are actually precision receptors that can detect the electric fields created in the water by the contractions of muscles in their prey. Considering the prey in question is largely worms and insect larvae, we’re talking big-time sensitivity here. The bill is also very receptive to changes in pressure, so a movement in still water can be picked up in this way as well. Researchers have suggested that by interpreting the difference in arrival time of the pressure and electrical signals, the hunter may even be able to determine the distance of the prey. This would be especially useful, given that platypuses close both their eyes and ears when hunting. In fact, they won’t even eat underwater; captured food is stored in cheek pouches and brought to land to be consumed.

So there you have it. The platypus: even weirder than you thought.

[Fun Fact:The female platypus has two ovaries, but only the left one works.]

Intelligent Design’s Worst Nightmare
(Via: Animal Planet)

Says Who?

  • Brown (2008) Nature 453: 138-139
  • Grant & Fanning (2007) Platypus. CSIRO Publishing.
  • Graves (2008) Annual Review of Genetics 42: 565-586
  • Moyal (2002) Platypus: The Extraordinary Story of How a Curious Creature Baffled the World. Smithsonian Press.

Killing Me Softly, or, The Fatal Embrace of the Strangler Fig

(Via: Wikimedia Commons)

Common Name: Strangler Figs

A.K.A.: Ficus species

Vital Stats:

  • There are around 800 sp. of figs, over half of which are hemi-epiphytes, like stranglers
  • Around 10% of all vascular plants are epiphytes (about 25,000 species)
  • The trees which produce the figs we eat are terrestrial, and do not grow in other trees

Found: Tropical forests of Latin America, Southeast Asia, and Australia

It Does What?!

What does it take to squeeze the life out of a full-grown tree? A lot of time and some very long roots, apparently. Many parasites eventually bring about the untimely death of their hosts, but few do it as slowly and as insidiously as the strangler fig.

Stranglers begin life as a tiny seed that leaves the back end of a bird and happens to land on a tree branch high in the rainforest canopy. The seed germinates, and the young fig begins to grow as an aerial plant, or epiphyte, taking its moisture from the air and its nutrients from the leaf litter on its branch. Thousands of plant species, including most orchids, grow in this manner. But then an odd thing begins to happen. The seedling produces a single long root. Very long. From tens of metres up in the canopy, this root grows all the way down to the ground. Many young stranglers will die before their questing root reaches the earth, but for those that make it, a connection is formed with the soil through which water and nutrients can be extracted. From this point on the great, towering giant which holds this tiny little interloper is in mortal danger.

The strangler fig, playing “harmless epiphyte.”
(Screenshot from The Private Life of Plants, BBC)

A secure connection to the soil allows the fig to speed up its growth and to begin sending more and more roots earthward. Rather than dropping straight down, like the initial root, these later organs will twine around the bark of the host tree. At first, the roots are tiny, like mere vines crawling over the host trunk. Over time, however, they thicken, covering more and more of the trunk’s surface. Where they touch or overlap, the roots actually fuse together, forming a mesh over the surface of the bark. Up above, the stem of the strangler is growing as well. It rises through and above the host branches, soaking up the light and leaving the other tree shaded and starved for energy.

In fact, this is a war fought on two fronts. As the starving host tree struggles to gather light energy to send downward from the leaves, it is also increasingly unable to bring water up from its roots. This is because the tree’s trunk continues to expand even as the strangler’s grip grows tighter around it. These opposing forces effectively girdle the tree, crushing the vascular tissues that carry moisture from the soil. Eventually, the battle is lost and the tree dies. Fortunately for the fig, its major investments in root growth have paid off – the dead host tree does not fall, taking the strangler with it. Instead, it simply rots where it stands. Finally, many years after its arrival on the scene, the strangler fig has achieved independence. It is now a free-standing tree, completely hollow and supported by its interwoven lattice of aerial roots.

The first root finds the ground.
(Screenshot from The Private Life of Plants, BBC)

So what happens when more than one strangler fig seed lands on a particular tree? Something quite unique… the roots of the different individuals fuse and form an organism which is indistinguishable from a single tree, except by molecular testing. These are what biologists refer to as ‘genetic mosaics.’ What’s more, the individuals actually begin to act like a single tree. You see, figs typically have staggered flowering times, such that it is unlikely for numerous trees in a small area to be in bloom at the same time. This helps in keeping their wasp symbionts well nourished. Once trees fuse, however, they seem to become physiologically linked as well, with researchers reporting that they bloom as a single individual.

The most hurricane-proof tree ever.
(Screenshot from The Private Life of Plants, BBC)

[Fun Fact: Some strangler fig species have very high growth rates, and huge individuals have actually been found engulfing abandoned buildings in the tropics.]

Says Who?

  • Harrison (2006) Journal of Tropical Ecology 22(4): 477-480
  • Perry & Merschel (1987) Smithsonian 17: 72-79
  • Schmidt & Tracey (2006) Functional Plant Biology 33: 465-475
  • Thomson et al. (1991) Science 254: 1214-1216
Don’t meditate under strangler figs.
(Via: Flickr, by vincenzooli)

Death from Below! (The Purse-Web Spider)

(Via: Wikimedia Commons)

Common Name: Purse-Web Spiders

A.K.A.: Family Atypidae

Vital Stats:

  • The family contains three genera; Atypus, Calommata, and Sphodros
  • Females reach up to 30mm (1.2”) in length
  • Fangs can measure up to half the spider’s body length
  • Prey includes crickets, beetles, millipedes, ants, wasps, and other spiders
  • Web tubes measure up to half a metre (20”) from top to bottom

Found: Africa, temperate regions of North America, Europe, and Asia

It Does What?!

Imagine you’re a beetle, peacefully strolling along the forest floor, minding your own business, when suddenly, two enormous black spikes drive up out of the earth and impale you through the abdomen. As everything fades to black, your last beetle-ly thought is, “What the hell was that?!

You have just become a tasty lunch for the purse-web spider.

So how does this work? Well, unlike most of the spiders we’re familiar with – those with small, pincer-like mouths that sit in webs all day – purse-webs are a type of primitive spider called a mygalomorph. In this group, the fangs are like a pair of large (relative to the spider) tusks that only move up and down; they don’t pinch, and this feature lends itself to some rather creative hunting methods.

Rather than constructing a flat, aerial web designed to have something fall into it, the purse-web spider spins what is essentially a silken tube-sock. The ‘foot’ of this sock lies along a slight depression in the ground, while the upper part lies vertically against a tree or rock (or, in some species, angles downward into the earth). The spider will then place bits of bark and lichen onto both parts of the web as camouflage. Over time, moss will actually begin to grow on the web, completing the disguise. All the spider needs to do now is wait, suspended from the ceiling of her underground lair, for some unwitting creature to walk over it. When this happens, she rushes to the source of the disturbance and spears her prey from below with her fangs before they realise what hit them (like this).

Invisible by spider standards, anyway.
(Via: Wikimedia Commons)

The spider will be vulnerable to larger predators if she ventures out into the open, so she simply cuts a slit in the web, drags her impaled prey inside, and seals up the hole again. Having sucked out their delicious insides, she then drops the dead husks out of the top of her sock like so much household garbage. In fact, researchers determined the diet of the purse-web spider by noting the various exoskeletons hanging from the outside of the web, having gotten caught on their way down. Apparently, all the dead bodies seemingly stuck to the side of a nearby tree aren’t much of a deterrent to other passersby.

So, since these spiders never leave their burrows, and kill anything that approaches, mating must be tricky, right? Right. The male is attracted to the female’s web by means of pheromones, and ventures out to find it. Once he locates the web, he must be very careful, tapping at the outside of the tube in a way that indicates he isn’t prey. Ultimately, though, whether he’s prey or not will be up to her. If the female inside isn’t yet mature or is already pregnant, she won’t hesitate to eat him when he attempts to enter the burrow. Researchers experimenting with placing male spiders in or near the webs of unreceptive females noted, essentially, that they run like hell as soon as they figure out what’s what. Research is amusing sometimes.

A male purse-web spider on what will be either the best or worst day of his life.
(Via: Florida Backyard Spiders)

But in the happy instances where the female is willing to mate, the male enters safely, and in fact continues to live with her for several months of domestic bliss before he dies naturally. And then she eats him anyway. Spiders are not sentimental creatures. Her eggs will take almost a year to hatch, and the young will stay with her for nearly another year after that, before striking out in the world to spin their own tube-sock of death.

Says Who?

  • Beatty (1986) Journal of Arachnology 14(1): 130-132
  • Coyle & Shear (1981) Journal of Arachnology 9: 317-326
  • Piper (2007) Extraordinary Animals: an encyclopedia of curious and unusual animals. Greenwood Press, Westport CT.
  • Schwendinger (1990) Zoologica Scripta 19(3): 353-366