Back to the Deep, Part 2

(Via: Best-Diving.org)
(Via: Best-Diving.org)

Common Name: Whales, Dolphins, and Porpoises

A.K.A.:  Order Cetacea

Vital Stats:

  • While the lifespan of most whale species is unknown, evidence indicates bowhead whales can reach ages of around 200 years.
  • Sexual maturity in whales occurs at around 7-10 years of age.

Found: Throughout the world’s oceans, save the very northernmost regions

WhaleMap

It Does What?!

Last time, we looked at how whales evolved from a deer-like creature the size of a housecat into the aquatic behemoths they are today. This week, we’ll cover a couple of the odds and ends of whale weirdness.

One important thing to understand about evolution – particularly in cases of a major habitat shift, as we see in whales – is that it’s not an orderly or “well-thought out” process. A good analogy is to think of an old building that’s being renovated and rewired. New additions may be built onto old structures and new wiring overlaid on old plans, creating a product very different, and often much less efficient, from what would have been created were a new building made from scratch. Because you have to work with what’s already there.

Whale respiration is an excellent example of this point. When the ancestors of modern cetaceans took to the water, developing gills and breathing like fish wasn’t an option, because the machinery wasn’t intact… they were already much too far down the evolutionary path of a terrestrial mammal. What they could develop were more efficient lungs and greater control over how they used them. For humans, breathing is an unconscious and largely involuntary act – it just happens, whether we think about it or not, and we can’t choose to stop doing it for very long. Even if you were to hold your breath until you passed out, you’d just start breathing again the moment you lost control (take note, parents of tantrum-prone toddlers). For whales on the other hand, respiration has become voluntary; they breathe because they choose to do so. Life underwater and the need to hunt without distraction made this ability more valuable than the safety of an involuntary mechanism.

caption (Via:)
Whale-snoring.
(Via: The Telegraph)

There is, of course, a major drawback. For whales, control over respiration came at the price of ever being able to fully fall asleep. If a cetacean were to sleep as we do, it would stop breathing and drown. As a result, they’ve evolved the ability to sleep with one brain hemisphere at a time. So while one hemisphere rests, the other is awake, one eye is open, and the whale is in motion, surfacing periodically. In fact, they appear not to experience REM sleep at all, meaning that these creatures gained their mastery of the oceans, very literally, at the cost of their dreams.

Another interesting problem during whale evolution was that of temperature regulation. Anybody who’s been swimming knows that even relatively warm water can start to give you the chills after a while, especially if you’re not expending a lot of energy. This is because water is an excellent conductor of heat, and will constantly draw warmth away from the skin’s surface. Now once you get into the sunless depths of the ocean, to say nothing of the polar oceans that many whales live in, things get very chilly very fast. To counteract this, whales have developed a thick, insulating layer of fat that holds in the heat and keeps their core body temperature from plummeting. Easy peasy, right?

But what happens when the whale expends a lot of energy, say, on an intense feeding session, and builds up too much heat? Ever shovel snow in a heavy winter coat? After a few minutes, you’re ready to tear the coat off because you’re sweating so much. Not so easy when the coat’s under your skin. Well, researchers have recently discovered what they think may be the answer to this problem.

caption (Via: National Geographic)
That’s 144 inches, in case you were wondering.
(By: Craig George, Via: National Geographic)

In the bowhead whale, which lives exclusively in frigid arctic and sub-arctic waters (and therefore has a great deal of insulation), biologists found a mysterious, twelve foot long organ positioned along the roof of the mouth, made out of what is, essentially, the same tissue found inside penises. That is to say, spongy tissue filled with a lot of blood vessels which can expand as it fills with blood. So how does a giant mouth-penis help a whale cool off? It’s quite clever, really. The brain being the major point of concern for overheating, the organ, called the corpus cavernosum maxillaris, lies directly beneath it. Hot blood is pumped into the organ, filling the spongy tissue, as the whale opens its mouth, letting in a great volume of icy water which surrounds the engorged tissue, quickly drawing off much of the heat. The cetacean equivalent of a cold shower. This cooled blood then drains from the organ and lowers the temperature around the brain.

And if this extra-penis-as-thermoregulator wasn’t cool enough, it seems to have a secondary function as well. The organ is also packed with sensitive nerve endings (naturally…), which the researchers believe the whales may use to determine the prey density in a given area (bowheads are filter feeders), helping them to decide whether to remain in a location and feed, or move on in search of better pickings.

Fun Facts:

  • The ability to “sleep” with one eye open was likely also highly valuable to the much smaller ancestors of the cetaceans, for whom predation was a bigger problem.
  • Whales have fleshy nasal plugs with which they can plug their blowholes while diving.
  • Oceanic dolphins have the highest relative brain size among extant cetaceans.

Says Who?

  • Ford et al. (2013) The Anatomical Record 296: 701-708
  • Gatesy & O’Leary (2001) Trends in Ecology and Evolution 16(10): 562-570
  • Gatesy et al. (2013) Molecular Phylogenetics and Evolution 66: 479-506
  • Lyamin et al. (2008) Neuroscience and Behavioral Reviews 32: 1451-1484
  • Uhen (2010) Annual Review of Earth and Planetary Sciences 38: 189-219
  • Zimmer (2013) The Loom, March 4th.
Advertisements

5 thoughts on “Back to the Deep, Part 2”

    1. Wow, giant whale testicles… a major oversight on my part. I’ll try to aim a little lower next time. 🙂

      Ahh, candiru- the reason we were told not to pee in the river while I was doing my field work in Guyana.
      It’s true, that would make a good post! I’ll slot it in after hermit crabs, which are up next. (And soon! I promise!)

      Like

  1. Sorry, I’m a little late to the party, but I’m interested in whether whales have a mechanism for keeping their sperm cool, or maybe the loss in sperm production is worth the decrease in drag.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s