The Zombie Apocalypse: Already Underway

(Via: this site)

Common Name: The Zombie-Ant Fungus

A.K.A.: Ophiocordyceps unilateralis

Vital Stats:

  • Whole “graveyards” of 20-30 ants may be found within a single square metre
  • Telltale bitemarks on fossil plants suggest this fungus, or a related species, may have been in operation for the last 48 million years
  • Host species is the carpenter ant Camponotus leonardi

Found: Tropical forests throughout the world

It Does What?!

Despite all the advances of modern neuroscience, the fact is, human understanding of brain chemistry and its manipulation still has a long way to go. Much to the chagrin of those plotting world domination, we won’t be chemically controlling each other’s minds any time soon. How embarrassing then, that a mere fungus seems to have perfected this technique. Almost fifty million years ago. Scooped again, humanity.

It begins with an ant walking along the ground, deep in a tropical forest somewhere. This ant, Camponotus leonardi, lives high in the trees, but must occasionally come down to cross from one tree to another when there is a break in the canopy. As it walks, a minute fungal spore drifts down from above and lands in its back, unnoticed. The unseen spore springs into action, producing an enzyme which breaks down the ant’s exoskeleton just enough to allow a fungal hypha, like a tiny root, to enter. The host’s fate is now sealed.

This is your brain on ‘shrooms.
(Via: Flickr, by Alextkt)

While the ant climbs back up into the canopy and goes about its business, the fungus grows through its insides, breaking down and consuming the non-vital soft tissues as it goes, keeping the animal alive even as it is being eaten. Soon, the fungal tendrils reach the brain and begin to produce chemicals which affect the host’s behaviour in very specific ways. First, it will experience convulsions that cause it to fall out of its tree. These will continue periodically, preventing it from returning to its colony. Over a period of hours, the ant will then wander, erratically and aimlessly, over the ground and low-growing plants.

This is where the precision of the fungus’ mind control becomes truly impressive. At solar noon, when the sun is highest in the sky, the infected ant will abruptly climb the stem of a small plant and find a leaf pointing north by northwest at a height of 20-30cm above the ground. Yes, really. No one knows how this jaw-dropping specificity is accomplished, but it’s what the fungus wants, providing a temperature of 20-30 degrees Celcius (68-86F) and a relative humidity of around 95%. In cases where ants were experimentally moved to different heights or orientations, the fungus was unable to reproduce properly.

What the fungus wants, the fungus gets.
(Via: Wikimedia Commons)

Having found the perfect leaf, the zombified ant will go to its underside, find a major leaf vein, and just bite down on it as hard as it can. The fungus has already destroyed the muscles required to release this grip, and so there the ant stays, slowly dying over the course of the afternoon. Once its victim has been dispatched, the fungus grows toward the leaf, further anchoring itself to the plant. Around a week later, the parasite completes its horrifying circle of life by growing a fruiting body, similar to a mushroom, from the back of the dead ant’s head. This will open to release thousands of tiny spores, raining down over any potential hosts which may be walking below.

While the fungus is able to infect other, closely related, species of carpenter ant, it has less precise control over these hosts and isn’t always successful in getting the ant to do its bidding, suggesting that even minor variations in brain structure can stump it. So we’re probably safe from the fungal zombie apocalypse. At least for the time being…

Says Who?

  • Andersen et al. (2009) American Naturalist 174(3): 424-433
  • Hughes et al. (2011) Biology Letters 7: 67-70
  • Hughes et al. (2011) BMC Ecology 11: 13
  • Pontoppidan et al. (2009) PloS ONE 4(3): e4835
Advertisements

The Bloodhounds of the Plant World (Cuscuta sp.)

(Via: Marine Science)

Common Names: Dodder, Goldthread, Witch’s Shoelaces

A.K.A.: Genus Cuscuta

Vital Stats:

  • Approximately 200 species
  • Part of the Convolvulaceae family, which includes morning glory and sweet potato
  • Only 15-20 species are considered to be problematic crop parasites

Found: Throughout temperate and tropical parts of the world

It Does What?!

We’ve discussed a few parasites on this blog already, and they’ve all been pretty typical of what comes to mind when we think of parasitic organisms- tiny, malignant little creatures that invade the host’s body, steal its resources, and, in some cases, eat its tongue. But when we think ‘parasite,’ we don’t usually think ‘plant.’ As it turns out, there are an estimated 4500 parasitic species just among the angiosperms, or flowering plants. Among them, dodders have to be one of the strangest.

Found nearly throughout the world, these vine-like plants begin as tiny seeds that germinate late in the spring or summer, after their potential host plants have established themselves. The young seedling has no functional roots and little or no ability to photosynthesize, so initially, it must make do with what little nutrition was stored in its seed. This isn’t much, so the plant has only a few days to a week to reach a host before it dies. To better its chances, the dodder stem swings around in a helicopter-like fashion as it grows, trying to hit something useful.

Much more impressive is the plant’s other method of finding suitable hosts- a sense of smell. Recent research has found that, uniquely among plants, the dodder can actually detect odours given off by surrounding plants and grow towards them. In experiments, the seedlings were found to grow toward the scent of a tomato, even if no actual plant was present. What’s more, they are capable of showing a preference among hosts. Presented with both tomato plants, which make excellent hosts, and wheat plants, which make poor hosts, seedlings were found to grow toward the aroma of tomatoes much more often. Like herbivores, they can use scent to forage amongst a variety of species for their preferred prey.

Smells like lunch… even to other plants.
(Via: Wikimedia Commons)

Once a host plant is found, the dodder begins to twine itself around the stem and to form haustoria (singular: haustorium). These are like tiny tap roots that pierce the host’s stem and actually push between the living cells inside until they reach the vascular system. Once there, the haustoria enter both the xylem (where water and minerals move upward from the roots) and the phloem (where sugars from photosynthesis move around the plant). From these two sources, the dodder receives all its nutrients and water, freeing it from any need for a root system, or even a connection to the soil. And since it doesn’t need to capture solar energy, all green pigment fades from the parasite, and it turns a distinctive yellow or red colour. Leaves aren’t necessary either, which is why the plant is essentially nothing but stem, explaining its common name of “witch’s shoelaces.”

Not what you want to see when you head out to weed the garden.
(Via: County of Los Angeles)

Once it gets comfortable on its new host, the dodder can grow at a rate of several centimetres a day (impressive for a plant) and produce stems of a kilometre or more in length, quickly overrunning an area. It can also attach itself to additional hosts – hundreds, in fact – which is problematic, because at this point it becomes the plant equivalent of a dirty shared needle. Since the vasculature of the hosts is connected, any virus present in one host can be freely transferred to any other. This ability, coupled with its affinity for potatoes, tomatoes, tobacco, and several other important crops, makes dodder a major nuisance for many farmers. And since it’s able to regenerate from just a single, tiny haustorium left in a host plant, it’s really hard to get rid of. There’s always a flip side, though; in some ecosystems, dodder can actually maintain biodiversity by preferentially parasitising the more competitive plants, allowing the weaker ones to survive. It seems dodder may also be the Robin Hood of the plant world.

[Extra Credit: Here’s a video showing how dodder can completely take over a group of nettle plants, complete with ominous soundtrack. Narrated by the fantastic Sir David Attenborough.]

Says Who?

  • Costea (2007-2012) Digital Atlas of Cuscuta (Convolvulaceae). Wilfred Laurier University Herbarium, Ontario, Canada
  • Furuhashi et al. (2011) Journal of Plant Interactions 6(4): 207-219
  • Hosford (1967) Botanical Review 33(4): 387-406
  • Pennisi (2006) Science 313: 1867
  • Runyon et al. (2006) Science 313:1964-1967

    Cuscuta: 1, Acacia: 0
    (Via: Wikimedia Commons)

Anglerfish: Absorbing Ladies and their Freeloading Mates

(Via: Inglestic)

Common Name: Anglerfish

A.K.A.: Order Lophiiformes

Vital Stats:

  • Comprised of 322 species in 18 different families
  • Most range in size from that of a ping pong ball to that of a football
  • Some can reach over a metre in length and weigh 27kg (59lbs.)

Found: Throughout the world’s oceans, mostly in deeper regions

It Does What?!

The more dissimilar a creature’s habitat is to our own, the more dissimilar we have to expect its lifestyle to be, so when we plumb the pitch black, cold, high pressure depths of the ocean, we’re counting on some serious weirdness. The anglerfish goes above and beyond in this department.

First off, have you seen these things? They’re essentially a set of mobile fangs. And what’s with that thing hanging down off their heads? It’s all part of an efficient setup that allows the anglerfish to survive in an environment with minimal light and sparse prey. These fish are what biologists call “sit and wait” predators. In order to avoid expending precious energy, they hang motionless in the water, waiting for something edible and foolish to approach. The dangly piece is actually a lure, filled with bioluminescent (glowing) bacteria. Seeing the glow and thinking it might be food, curious creatures draw near and are quickly gobbled up by the anglerfish. That enormous mouth, combined with a flexible bone structure, allows the fish to swallow very large prey, relative to its own size.

Really… how unobservant must their prey be?
(Via: National Geographic)

Amazingly, the anglerfish’s horrifying appearance isn’t its most notably odd trait. Not even close. You see, all these characteristics we’ve discussed so far are only present in the female of the species. The male is a different creature entirely. Many times smaller than the female, you’d be hard pressed to immediately recognise a male anglerfish as even being part of the same species. In fact, researchers initially thought they were babies. Their adult form is only 6-10mm (0.24-0.39”) long in some species, placing male anglerfish among the smallest vertebrates on earth.

What’s more, they don’t have a functional digestive system… they literally don’t ever eat. Sustained only by the energy in his own tissues, the young male must find a female and mate before he starves to death. To aid in his quest, he has very well-developed eyes and huge nostrils, which allow him to follow the pheromone trail of a potential mate.

The somewhat less intimidating male anglerfish.
(Via: Anglerfish Info)

Now it gets weird. Upon locating a female, the male swims up and latches on to her with his teeth, usually on the lower side of her body. He then starts to release an enzyme which dissolves both his mouth and her skin, right down to their respective blood supplies. Soon, their bodies actually fuse together, and blood from the female begins to nourish the now-parasitic male. In some species, this fusion goes all the way to the base of the male’s skull, giving him the appearance of having his entire head absorbed into his mate’s body. Once fused, the male undergoes a growth spurt, thanks to his new food source, but his internal organs, as well as his eyes and nostrils, degenerate and atrophy. The exception, of course, being his testicles, which grow along with the rest of his outer body.

A female anglerfish and her clingy boyfriend.
(Via: Wikimedia Commons)

Her mate degenerated down to a mere sperm-producing external organ, the female anglerfish is now essentially a self-fertilizing hermaphrodite. With anywhere between one and eight males attached to her, she has an abundant supply of sperm available whenever she has ripe eggs to be fertilized. As for the males, they will “live” for as long as the female lives, and continue to reproduce indefinitely.

[Fun Fact: the species Ceratias holboelli has the most extreme size difference between the sexes. Females are more than 60 times the length and about half a million times heavier than the males.]

[And if you like your science lessons in cartoon form, be sure to check out this out.]

Says Who?

Come to Mama!
(Via: fugly.com)

What’s the matter, louse got your tongue? (Cymothoa exigua)

Via: Parasite of the Day

Common Name: The Tongue-Eating Louse

A.K.A.: Cymothoa exigua

Vital Stats:

  • Females are 8-29mm long by 4-14mm wide (0.3”-1.1” x 0.16”-0.55”)
  • Males are 7.5-15mm long by 3-7mm wide (0.3-0.6” x 0.12”-0.28”)
  • Preys on 8 species of fish from 4 different families

Found: In the Eastern Pacific, between the Southern U.S. and Ecuador

It Does What?!

With a name like “Tongue-Eating Louse”, you know this is going to be viscerally horrible, but bear with me… it’s also pretty neat. Despite the name, these aren’t actually lice, but parasitic crustaceans known as isopods. While there are dozens of species in the genus Cymothoa, most are parasites which live in the gills of fish and are, relatively speaking, unremarkable. But Cymothoa exigua is something special. While the male of the species (and this is a slippery term, as they can change sex when necessary) lives in fish gills, the female has developed an altogether original strategy.

Try to enjoy a tuna sandwich now.
Via: Smithsonian.com

Entering through the gills, the female takes up a position at the back of the fish’s mouth and attaches herself to the base of its tongue. She then pierces the tongue with her front appendages and begins to consume the blood inside it. Over time, the lack of bloodflow causes the tongue to slowly wither up and fall off. What’s left is a stump consisting of about 10% of the original tongue (yes, someone measured this). The parasite can now attach herself to the stump using her seven pairs of hook-like pereopods (read: ‘feet’) and actually begin to function as the fish’s tongue.

What’s really amazing is how well this seems to work. The parasite has evolved a body shape which closely matches the curves of the inside of the host’s mouth. Unlike our tongues, a fish tongue has no real musculature or flexibility; its only real function is to hold food against the fish’s teeth. With the parasite in place, the host is able to use its body to do exactly that. While the isopod is thought to feed on the fish’s blood, researchers have found that infected hosts have normal body weights and typical amounts of food in their digestive tract when caught. This is, to date, the only known case of a parasite functionally replacing an organ in its animal host.

Once it’s in there, this thing’s not coming out without a fight.
Via: This Site

Because edible snapper fish are amongst the host species of C. exigua, there have been cases of the parasite showing up in people’s supermarket purchases, including one person who thought they had been poisoned after eating one. So are they dangerous? Not to eat, no, but researchers tell us they can give a nasty little bite, given the opportunity. So the moral of this story is: if you bring home a fish for dinner and see an evil-looking parasite posing as its tongue… don’t stick your finger in its mouth.

.

Says Who?

  • Brusca & Gilligan (1983) Copeia 3: 813-816
  • Brusca (1981) Zoological Journal of the Linnean Society 73(2): 117-199
  • Williams & Bunkly-Williams (2003) Noticias de Galapagos 62: 21-23
See you in your nightmares.

A Shellfish Goes to the Dark Side (Sacculina carcini)

The crab barnacle, hitchin’ a ride.
(Image by Hans Hillewaert)

Common Name: Crab Barnacle, or the charmingly descriptive Dutch term “krabbenzakje,” meaning “crab bag”

A.K.A.: Sacculina carcini (and other Sacculina species)

Found: In the coastal waters of Europe and North Africa

It Does What?!

Most barnacles, those almost quaint crusts seen decorating old piers and ships, live their lives by cementing themselves to a hard underwater surface and using their arm-like limbs to pull passing bits of food into their mouths all day. Not so for the crab barnacle, who decided that all that arm-waving was for chumps and set about evolving into the ultimate free-loader.

Normal, hardworking barnacles, for the sake of comparison…
(Image by Michael Maggs)

In its immature larval form, Sacculina has a similar body plan to other barnacles and is able to swim about freely; however, rather than finding a surface to settle down on, it finds itself a crab. Typically, this will be a green crab, species Carcinus maenas. The female barnacle (more on the males later) crawls along the surface of the crab’s shell until she comes to a joint – a chink in the armour – where she turns into a sort of hypodermic needle, injecting herself into the crab and leaving her limbs and shell behind. Now nothing more than a tiny slug-like mass, she makes her way to the crab’s abdomen and proceeds to grow rootlike tendrils throughout her host’s body, drawing nutrients directly from the bloodstream.

If that wasn’t disturbing enough, consider Sacculina’s mode of reproduction. In addition to its internal root system, the parasite forms an external sac (hence the nickname ‘crab bag’) where the female crab normally keeps her fertilized eggs. This is where the male barnacle comes into play. Upon finding a crab already infected by a female, the male will do the same needle trick, injecting himself into the external sac and living for the rest of his life as a parasite inside the female’s body. Fertilization takes place and the sac is soon full of microscopic Sacculina larvae.

In case you needed a closer look.

Since the barnacle infection has rendered the host sterile, and because crabs aren’t very bright, the crab will now care for this sac of larvae as if they were her own young. But what if the infected crab was male, you ask? No problem. The parasite is able to interfere with his hormones to such an extent that, in addition to changing his body shape to that of a female, he now actually behaves like, and even carries out the mating gestures of, a female crab.

Now, this may not seem so bad from the point of view of the crab; I mean, it doesn’t know it’s carrying around evil changeling spawn, right? But it’s a bit worse than that. Wanting to keep all the available energy for its own use, the parasite prevents the crab from moulting its shell or re-growing lost claws, as crabs normally do. This leads to a variety of secondary infections which, coupled with malnutrition, leads to the premature death of the crab. But nature isn’t without a sense of fair play… research has now found that Sacculina sometimes succumbs to viruses and yeast naturally present in the crab’s body, via infection of its rootlets. Take that, bloodsucking barnacle!

Says Who?

  • Powell & Rowley (2008) Diseases of Aquatic Organisms 80: 75-79.
  • Zimmer (2000) “Do parasites rule the world?” Discover Magazine (August issue).
  • Russell et al. (2000) Journal of the Marine Biological Association of the U.K. 80: 373-374.
  • Mouritsen & Jensen (2006) Marine Biology Research 2: 270-275.
  • Goddard et al. (2005) Biological Invasions 7: 895-912.